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Abstract: This paper analyzes classical and quantum physical systems from an optimal control
perspective. Specifically, we explore whether their associated dynamics can correspond to an open-
or closed-loop feedback evolution of a control problem. Firstly, for the classical regime, when it
is viewed in terms of the theory of canonical transformations, we find that a closed-loop feedback
problem can describe it. Secondly, for a quantum physical system, if one realizes that the Heisenberg
commutation relations themselves can be considered constraints in a non-commutative space, then
the momentum must depend on the position of any generic wave function. That implies the existence
of a closed-loop strategy for the quantum case. Thus, closed-loop feedback is a natural phenomenon
in the physical world. By way of completeness, we briefly review control theory and the classical
mechanics of constrained systems and analyze some examples at the classical and quantum levels.
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1. Introduction

Over the last decades, there has been increasing interest among physicists in applying
their concepts and methods to economics, as seen in some classical texts [1–8] or exciting
articles about quantum mechanics in finance [9–16]. In this paper, we want to do the exact
opposite, that is, we want to apply ideas from the optimal control theory (usually used
in finance and economics [17–21]) to interpret the classical and quantum physical world.
Indeed, open- and closed-loop control problems are not in the toolbox of mathematical
methods in physics; nevertheless, dynamic optimization with its optimal control theory is
the cornerstone of modern economic analysis.

There is little in the literature on the possible relationships between optimal control
theory and classical and quantum mechanics, despite the fact that they share certain similar
mathematical structures. For example, the Pontryagin equations resemble the Hamilton
equations, and the Bellman equation is analogous to the Hamilton–Jacobi Equation, which
corresponds to the classical limit of quantum theory. Recently, some studies have appeared
on how a control problem associated with an economic model can be interpreted as a
second-class constrained physical system [22–26]. In [22], it is found that at the classical
level, the constrained dynamics given by Dirac’s brackets are the same as those provided
by the Pontryagin equations [27]. The quantization of this second-class constrained system
(with a right-order operator scheme) ended with a Schrödinger equation, which is just the
Hamilton–Jacobi–Bellman equation used in optimal control theory and economics [28].
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It is surprising to find that after the quantization of the Pontryagin theorem, Bellman’s
maximum principle is obtained.

Thus, if an economic feedback system (characterized by an optimal control theory
model) can be seen as a physical system, one can naturally ask the inverse question: Can
the physical systems be seen from an optimal control perspective? Or, more specifically,
do there exist open-loop and closed-loop strategies in physical systems? If the answer is
affirmative, then where are they? Moreover, how and why do these feedback problems
appear? This paper gives some clues and answers to all of these questions.

From a control theory perspective, open-loop strategies for the Lagrangian multiplier
characterize the Pontryagin theory, while the Hamilton–Jacobi–Bellman equation has
intrinsically closed-loop strategies. Since Pontryagin’s approach is equivalent to a classical
mechanical model and Bellman’s theory is a quantum mechanical one, that suggests that
open-loop strategies can be related to classical mechanics and closed-loop feedbacks with
quantum mechanics.

This article shows that classical mechanics can be represented as an open-loop feedback
problem in terms of Hamilton’s equations and a closed-loop strategies problem when one
uses the canonical transformations approach. Indeed, both schemes are equivalent due to
the invariance of the classical Hamiltonian equations by canonical transformations.

In the same way, from the perspective of quantum physics, the Heisenberg canonical
commutation relations can be seen as a constraint in the non-commutative phase-space;
this necessarily implies the existence of a specific relation between the momentum and
the position, which is equivalent to a closed-loop feedback. Thus, open- and closed-loop
feedback are also natural phenomena in our physical world.

This work has two principal objectives: The first is to give an optimal control perspective
of the classical and quantum systems and to understand how and why such feedback
appears. The second one is to show the physicist and optimal control community how the
optimal control theory and physical systems (with its classical and quantum mechanical
description of the world) are related. For that, it is necessary to have a common language
and give the principal ideas behind each theory. The second objective will be fulfilled
with the lecture in Sections 2 and 3 of this paper. After that, we progress to complete the
first objective.

It should be noted that given the length of our article, we have not addressed
interesting recent topics of stability in control theory (see, for example, [29,30]) and quantum
calculus (see, for example, [31,32]). Thus, the main purpose of the paper is to provide a
general discussion of the relationship between classical mechanics and quantum mechanics
with optimal control theory.

The paper is structured as follows: Section 2 reviews, for the non-specialist reader,
some central ideas in control theory, such as the Pontryagin/Bellman approaches and
the concepts of closed- and open-loop strategies. Section 3 establishes the basic ideas of
classical mechanics in Lagrangian and Hamiltonian forms. Also, the so-called constrained
systems in physics are defined and given as an example of this class of system, the optimal
control theory itself, at classical and quantum levels.

In Section 4, we start with the paper’s primary objective, so Section 4.1 gives the first
clues to interpret classical mechanics as a closed-loop system in control theory. Section 4.2
briefly reviews canonical transformations, which is the standard way to obtain the Hamilton–
Jacobi Equation in physics from a purely classical perspective (non-quantum). In Section 4.3,
we consider quantum mechanics and discuss why quantum mechanical systems must be
interpreted naturally as closed-loop ones. Section 5 gives several examples of the presence
of closed-loop strategies in physics at the classical and quantum levels. Lastly, in Section 6,
the conclusions of this work are presented.

2. Key Ideas in Control Theory

This section reviews some critical concepts in control theory, such as the Pontryagin
approach with its open-loop strategies and the Bellman approach with its closed-loop
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strategies, that we will use later to interpret the physical systems from an optimal control
point of view.

2.1. Dynamic Optimization: The Pontryagin Approach

A generic one-dimensional system will be considered to emphasize the fundamental
ideas and keep the equations simple. Generalizations to higher dimensions are straightforward.
Consider a standard economic optimal control problem [17,18] for which one must optimize
functional

A[x, u] =
∫ t1

t0

F(x, u, t) dt, (1)

where x represents a state variable (for example, the production rate of a specific good),
and u denotes the control variable (such as the cost associated with a firm marketing). The
state variable x must obey the market dynamics defined by the differential equation

ẋ = f (x, u, t) x(t0) = x0. (2)

and the optimal control problem consists of determining the production path x = x(t)
and the control path u = u(t), which maximise or minimise the cost function. To achieve
this goal, one must apply the Lagrange multiplier method, so one considers instead an
improved functional A defined over the extended space (x, u, λ), which is given by:

A[x, u, λ] =
∫ t1

t0

F(x, u, t)− λ(ẋ− f (x, u, t)) dt. (3)

To obtain the optimal solution, the integrand of (3) can be interpreted as the Lagrangian:

L(x, u, λ, ẋ, u̇, λ̇) = F(x, u, t)− λ(ẋ− f (x, u, t)). (4)

so the extremal curves then satisfy the Euler–Lagrange equations:

∂L
∂λ
− d

dt
( ∂L

∂λ̇

)
= 0,

∂L
∂x
− d

dt
(∂L

∂ẋ
)
= 0,

∂L
∂u
− d

dt
(∂L

∂u̇
)
= 0. (5)

These equations are also written in the form

ẋ =
∂H
∂λ

, λ̇ = −∂H
∂x

,
∂H
∂u

= 0, (6)

with the Hamiltonian H defined by

H = H(x, u, λ, t) = F(x, u, t) + λ f (x, u, t). (7)

Equation (6) are the Pontryagin equations, which can be obtained through the Pontryagin
maximum principle, and these solve the optimization problem.

2.2. Open-Loop and Closed-Loop Strategies

Note that the action (3) can be written in a Hamiltonian form as

A[x, u, λ] =
∫ t1

t0

−λẋ + H(x, u, λ, t) dt. (8)

Now, the Pontryagin equations can also be obtained by optimizing the action (8) for its
three variables x, u and λ. If δx, δu, and δλ denote the corresponding functional variations,
by expanding the Hamiltonian in a Taylor series around the optimal solution x∗(t), u∗(t),
λ∗(t) as

x(t) = x∗(t) + δx(t), u(t) = u∗(t) + δu(t) λ(t) = λ∗(t) + δλ(t), (9)
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one obtains, after standard manipulations (that is, (1) by keeping only the first-order
terms, (2) making an integration by parts and (3) noting that the initial point is fixed, i.e.,
δx(t0) = 0).

δA =
∫ t1

t0

[(∂H
∂λ
− ẋ
)

δλ +

(
∂H
∂x

+ λ̇

)
δx +

∂H
∂u

δu
]
dt− λ(t1)δx(t1). (10)

where quantities inside the square bracket in the integral are evaluated at the optimal
solution x∗, u∗, λ∗. To maximize or minimize the action δA must vanish, that is, the action
must be stationary under arbitrary functional variations

δA = 0. (11)

Now, in optimal control theory, there are two classes of control strategies:

• Open-loop strategies that depend only on time: u = u(t);
• Closed-loop strategies that depend on the state variable x and time: u = u(x, t) [33].

In the case of an open-loop strategy, x(t), u(t), and λ(t) are independent variables,
so δx, δu, and δλ are linearly independent. Hence, Equation (11) implies that coefficients
that multiplies the functional variations in (10) must be vanish, and one obtains then the
Pontryagin Equation (6) and the transversality condition λ(t1) = 0 for the optimal solution

x = x∗(t), λ = λ∗(t), u = u∗(t). (12)

What happens, however, with closed-loop strategies? In this case, due to the relations
between u = u(x, t) and x, the variations are related by δu = ∂u

∂x δx. Substituting this
into (10) yields

δA =
∫ t1

t0

[(∂H
∂λ
− ẋ
)

δλ +

(
∂H
∂x

+
∂H
∂u

∂u
∂x

+ λ̇

)
δx
]
dt− λ(t1)δx(t1). (13)

If λ and x are independent, the optimization of the functional (11) implies

∂H
∂λ
− ẋ = 0 ,

∂H
∂x

+
∂H
∂u

∂u
∂x

+ λ̇ = 0, (14)

plus the transversality condition. Note that the optimization process does not give the
equation associated to the optimal control in (6). Then, u = u(x, t) must be given explicitly
in terms of x, in another case, one has three unknowns but only two equations of motion.
Thus, the variational problem is not well-defined for an arbitrary closed-loop strategy
u = u(x, t) because the equations of motion can not determine its structure. It must be
given from the beginning.

Now, note that equation for the control u in (6) is not a differential equation, but
is algebraic:

∂H
∂u

=
∂F(x, u, t)

∂u
+ λ

∂ f (x, u, t)
∂u

= 0. (15)

From the above equation u∗ can be solved (in principle) as

u = u∗(x, λ, t), (16)

Thus, the optimization problem implies that the optimal open-loop u∗ strategy (12) is a
closed-loop one. How can one understand this contradiction? Could the optimization
problem be inconsistent?
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To give an answer, consider the following arbitrary (non-necessarily optimal) closed-
loop strategy u = u(x, λ, t), so δu = ∂u

∂x δx + ∂u
∂λ δλ. After substituting this into (10)

δA =
∫ t1

t0

[(∂H
∂λ

+
∂H
∂u

∂u
∂λ
− ẋ
)

δλ +

(
∂H
∂x

+
∂H
∂u

∂u
∂x

+ λ̇

)
δx
]
dt− λ(t1)δx(t1). (17)

If x(t) and λ(t) are independent, then (11) gives the equations

∂H
∂λ

+
∂H
∂u

∂u
∂λ
− ẋ = 0,

∂H
∂x

+
∂H
∂u

∂u
∂x

+ λ̇ = 0. (18)

Clearly the above equations are not equivalent to the Pontryagin open-loop equations.
but if one choose for u its optimal value u∗ defined by ∂H

∂u = 0, then Equation (18) becomes

∂H(x, u∗(x, λ, t), λ, t)
∂λ

− ẋ = 0,
∂H(x, u∗(x, λ, t), λ, t)

∂x
+ λ̇ = 0, (19)

which are the Pontryagin equations. The solutions of (19) give optimal paths for the
state variable x = x∗(t) and Lagrangian multipliers λ = λ∗(t) respectively. Then, the
optimal control open-loop strategy u∗(t) in (12) is obtained from the optimal closed-loop
strategy (16) as

u = u∗(t) = u∗(x∗(t), λ∗(t), t) (20)

In this way, the optimal closed-loop strategy u = u∗(x, λ, t) evaluated over the optimal
x∗(t) and λ∗(t) trajectories is equivalent to the optimal open-loop u = u∗(t) one. So, from
now on, we will not distinguish between them in the case of Pontryagin’s theory.

Lastly, consider the case in which λ and x are not independent but λ = λ(x, t), then
δλ = ∂λ

∂x δx. Replacing it into (17), choosing the optimal control u = u∗, considering the

transversality condition λ(t1) = 0 and the fact that λ̇ =
∂λ

∂x
ẋ +

∂λ

∂t
, one obtains

δA =
∫ t1

t0

[(∂H
∂λ

∂λ

∂x
− ẋ

∂λ

∂x

)
+

(
∂H
∂x

+
∂λ

∂x
ẋ +

∂λ

∂t

)]
δx dt. (21)

From H = F(x, u∗, t) + λ f (x, u∗, t), it follows that

∂H
∂λ

= f (x, u∗, t)
∂H
∂x

=
∂F(x, u∗, t)

∂x
+ λ

∂ f (x, u∗, t)
∂x

,

and using these equations in (21) finally gives

δA =
∫ t1

t0

[(
f

∂λ

∂x
+

∂F
∂x

+ λ
∂ f
∂x

)
+

∂λ

∂t

]
δx dt

or

δA =
∫ t1

t0

[dH∗

dx
+

∂λ

∂t

]
δx dt.

where
H∗ = H∗(x, t) = H(x, u∗(x, λ(x, t), t), λ(x, t), t) (22)

is the effective Hamiltonian in terms of state variable x. Thus, the optimization process (11)
implies that λ = λ(x, t) satisfies the optimal consistency condition

dH∗(x, t)
dx

+
∂λ

∂t
= 0, (23)

If λ∗(x, t) satisfies (23), the optimal state variable x(t) is obtained from Equation (2) as

ẋ = f (x, u∗(x, λ∗(x, t), t), t). (24)
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Thus, there exist three types of strategies in optimal control theory: open-loop (x = x(t),
λ = λ(t), u = u∗(t)), inert closed-loop (x = x(t), λ = λ(t), u = u∗(x(t), λ(t), t)) and λ
closed-loop (x = x(t), λ = λ(x(t), t), u = u∗(x(t), λ(x(t), t), t)) strategies. The first two are
entirely equivalent because these give the same dynamical equations.

2.3. Dynamic Optimization: Bellman theory

A different approach to the optimal control problem is given by the dynamic programming
theory developed by Richard Bellman [28] in the 1950s. In this case, the fundamental
variable is not the state variable but is the optimal value of the action defined by

J(x0, t0) = max
u

( ∫ t

t0

F(x, u, t) dt

)
, (25)

where x satisfies (2). Bellman’s dynamic programming principle implies that J(x, t) satisfies
a non-linear partial differential equation called the Hamilton–Jacobi–Bellman equation [17]
given by

max
u

(
F(x, u, t) +

∂J(x, t)
∂x

f (x, u, t)
)
= −∂J(x, t)

∂t
. (26)

Note that the Lagrangian multiplier λ of the Pontryagin approach can be identified
with ∂J(x,t)

∂x . Thus, from the Pontryagin perspective, Bellman’s theory is a model with a

closed-loop λ strategy λ(x, t) = ∂J(x,t)
∂x . Maximizing the left side of (26) for the control

variable gives

u∗ = u∗(x, t) = u∗(x,
∂J(x, t)

∂x
, t) = u∗(x, λ(x, t), t)

so the Hamilton–Jacobi–Bellman equation becomes

F(x, u∗, t) +
∂J(x, t)

∂x
f (x, u∗, t) = −∂J(x, t)

∂t
. (27)

Differentiating (27) with respect to x, one obtains

∂F(x, u∗, t)
∂x

+
∂2 J(x, t)

∂x2 f (x, u∗, t) +
∂J(x, t)

∂x
∂ f (x, u∗, t)

∂x

+

(
∂F(x, u∗, t)

∂u∗
+

∂J(x, t)
∂x

∂ f (x, u∗, t)
∂u∗

)
du∗(x, t)

dx

= − ∂2 J(x, t)
∂x∂t

.

Noting that
∂H
∂u

=
∂F(x, u∗, t)

∂u∗
+

∂J(x, t)
∂x

∂ f (x, u∗, t)
∂u∗

= 0,

and replacing ∂J(x,t)
∂x by λ(x, t), one arrives to

∂F(x, u∗, t)
∂x

+
∂λ(x, t)

∂x
f (x, u∗, t) + λ

∂ f (x, u∗, t)
∂x

= −∂λ(x, t)
∂t

,

or
dH∗(x, t)

dx
+

∂λ(x, t)
∂t

= 0.
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The last equation is the same equation (23). Thus, the previous analysis implies that the
consistency condition (23) is just the derivative of the Hamilton–Jacobi–Bellman equation.
Equation (23) is then according to (27) equal to

d
dx

(
F(x, u∗, t) +

∂J(x, t)
∂x

f (x, u∗, t) +
∂J(x, t)

∂t

)
= 0. (28)

By integrating the last equation one obtains

F(x, u∗, t) +
∂J(x, t)

∂x
f (x, u∗, t) +

∂J(x, t)
∂t

= g(t),

where g(t) is a time-dependent arbitrary function. Then, the Pontryagin approach gives for
a closed-loop λ∗(x, t) = ∂J(x,t)

∂x a non-homogeneous Hamilton–Jacobi–Bellman equation,
whereas Bellman’s maximum principle gives instead a homogeneous Hamilton–Jacobi–
Bellman equation.

3. Classical Mechanics

In this section we review the Lagrangian and Hamiltonian approaches to classical
mechanics and the analysis of constrained systems in physics.

3.1. Lagrangian Mechanics

It is well-known in classical mechanics that for a conservative system, that is, the one
for which the force is the gradient of a potential energy U(~r)

~F = −∇ U(~r), (29)

the Newton equations
~F = m~a (30)

can be obtained through an optimization process similar to an optimization dynamic
economic problem. For simplicity, in the case of a one-dimensional non-relativistic system
given by the x coordinate, the objective functional is the Action functional A[x, ẋ] defined by

A[x, ẋ] =
∫ t1

t0

L(x, ẋ)dt (31)

where L(x, ẋ) = 1
2 mẋ2 −U(x) is the Lagrangian function. The action (31) optimization for x

gives the well-known Euler–Lagrange equation

∂L
∂x
− d

dt

(
∂L
∂ẋ

)
= 0 (32)

that, of course, is the Newton equation for the x variable:

∂L
∂ẋ

= mẋ,
d
dt

(∂L
∂ẋ

)
= ẍ = a,

∂L
∂x

= −∂U
∂x

= Fx (33)

so Equation (32) is just Fx = max. Note that the Lagrangian approach gives a second-order
differential equation for the coordinate x.

3.2. Hamiltonian Mechanics

Instead of using the space (x, ẋ) associated with the Lagrangian formalism, one can
take the phase-space (x, px), where the momentum variable px is defined by

px =
∂L(x, ẋ)

∂ẋ
. (34)
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The last equation can be used to solve ẋ in terms of px as ẋ = ẋ(px). In this phase-
space (x, px), the objective functional is the Hamiltonian Action defined by

A[x, px] =
∫ t1

t0

px ẋ− H(x, px) dt, (35)

where the Hamiltonian function H(x, px) is constructed from the Lagrangian L(x, ẋ) as

H(x, px) = px ẋ(px)− L(x, ẋ(px)). (36)

The equations of motion in the phase-space (x, px) are obtained by the optimization of
the Action functional (35) for x and px as independent variables. In this case, by the same
standard techniques used in (10) one has that

δA =
∫ t1

t0

[( ∂H
∂px
− ẋ
)

δpx +

(
∂H
∂x

+ ṗx

)
δx
]
dt +

[
px(t2)δx(t2)− px(t1)δx(t1)

]
(37)

To obtain the optimal phase-space trajectory one need that

δA = 0, (38)

so all the terms in δx and δpx must vanish. For this, it is supposed that:

• The end points of x(t) are fixed, that is, δx(t1) = 0 and δx(t0) = 0;
• δx and δpx are linearly independent.

Therefore, the Hamiltonian equations of motion are obtained from (38) as:

ẋ =
∂H(x, px)

∂px
, ṗx = −∂H(x, px)

∂x
. (39)

One must recall that Hamilton equations are first-order differential equations, one for
each independent x and px variable. Both first-order equations are equivalent to the single
second-order Euler–Lagrange Equation (32).

Now, by introducing the Poisson brackets between phase-space functions A(x, px)
and B(x, px) according to

{A, B} =
(

∂A
∂x

∂B
∂px
− ∂B

∂x
∂A
∂px

)
(40)

the Hamilton equations of motion read as

ẋ = {x, H} ṗx = {px, H}. (41)

Note that the dynamical evolution of any variable θ defined on phase-space will given
by Hamiltonian-type equation

θ̇ = {θ, H} (42)

3.3. Constrained Systems in Hamiltonian Mechanics

In the usual cases, the velocities ẋ can be solved in terms of px from Equation (34).
However, there are situations (the most interesting ones) where this cannot be carried out.
For example, for the Lagrangian

L(x, ẋ) = aẋ + b. (43)

one has that
px =

∂L
∂ẋ

= a. (44)
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The class of systems for which the velocities cannot be solved regarding the momentum
are called constrained systems. In this case, the Lagrangian and Hamiltonian theories can
be different. Paul Maurice Dirac, a British physicist and Nobel winner, developed a
methodology for studying general constrained systems in the phase-space. This method is
now called Dirac’s method [34–37]. One must recall that constrained systems are ubiquitous
in physics because all important physical theories, such as Electromagnetism, Einstein’s
General Relativity, and the Gauge theories of particle physics, are examples of this category.

In the following subsection, Dirac’s method will be used to understand control theory
from a physicist’s point of view.

3.4. Optimal Control Theory as an Example of a Constrained System

Recently, studies have shown how a generic control problem can be reinterpreted as a
second-class constrained physical system [22–26]. In [22], it is found that at the classical
level, the optimal control problem (1) and (2) when writing in terms of the state variable x,
control variable u and the Lagrangian multiplier λ as (see Equations (7) and (8))

A[x, u, λ] =
∫ t1

t0

−λẋ + H(x, u, λ, t) dt =
∫ t1

t0

−λẋ + F(x, u, t) + λ f (x, u, t) dt (45)

can be mapped to the Hamiltonian Action of a fictitious particle. In fact, by comparing
Equation (45) with (35), one notes that the Lagrangian multiplier λ can be identified with
momentum px, so the functional (45) can be written as

A[x, u, px] = −
∫ t1

t0

px ẋ−
(

F(x, u, t) + px f (x, u, t)
)

dt (46)

The above action is just a Hamiltonian action modulo a minus sign, so that one can
use the action

A[x, u, px] =
∫ t1

t0

px ẋ−
(

F(x, u, t) + px f (x, u, t)
)

dt (47)

The Lagrangian associated with Equation (47) is

L = px ẋ−
(

F(x, u, t) + px f (x, u, t)
)

(48)

One must note that L does not depend on u̇, so its momentum pu associated with the
u coordinate becomes

pu =
∂L
∂u̇

= 0 (49)

Equation (49) is then a constraint in the phase-space (x, u, px, pu) (one cannot solve u̇
in terms of pu from the above equation), and the theory of optimal control thus becomes a
constrained system. We denote the constraint in (49) as

Φ1 = pu = 0 (50)

These constraints are called primary constraints according to Dirac’s method. The
corresponding Hamiltonian in the phase-space (x, u, px, pu) is then

H(x, u, px, pu) = px ẋ + puu̇− L = px ẋ + puu̇ + (F(x, u, t) + px f (x, u, t))− px ẋ (51)

so
H(x, u, px, pu, t) = Φ1u̇ + F(x, u, t) + px f (x, u, t) (52)

or
H(x, u, px, pu, t) = Φ1u̇ + H0(x, u, px, pu, t) (53)

with
H0(x, u, px, pu, t) = F(x, u, t) + px f (x, u, t). (54)
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On the constraint surface Φ1 = 0, the Hamiltonian is then

H(x, u, px, pu, t) = H0(x, u, px, pu, t) (55)

Thus, H0 is the energy of the system. The constraint (49) would be incorporated
in the model by the Lagrange multipliers method, so one should consider instead a
modified Hamiltonian defined by

H̃(x, u, px, pu, t) = H0 + µ1Φ1 = H0 + µ1 pu (56)

where µ1 is a Lagrange multiplier. Now, one can impose that the constraint Φ1 be preserved
in time with the modified Hamiltonian (56), so

Φ̇1 =
{

Φ1, H̃
}
= 0, (57)

where {A, B} denotes the Poison bracket in the (x, u, px, pu) phase-space

{A, B} =
(

∂A
∂x

∂B
∂px
− ∂B

∂x
∂A
∂px

)
+

(
∂A
∂u

∂B
∂pu
− ∂B

∂u
∂A
∂pu

)
(58)

Equation (57) yields

Φ̇1 =
{

pu, H̃
}
= −∂H̃

∂u
= −∂H0

∂u
=

∂F(x, u, t)
∂u

+ px
∂ f (x, u, t)

∂u
= 0. (59)

From the last equation, one cannot solve any velocity ẋ or u̇ in terms of momentum px
or pu. Thus, (57) is a new secondary constraint and is just the optimal law for the control
variable. Then, from a phase-space analysis, the third Pontryagin equation in (6) is just the
secondary constraint

Φ2 =
∂H0

∂u
=

∂F(x, u, t)
∂u

+ px
∂ f (x, u, t)

∂u
= 0. (60)

To add the effect of the secondary constraint, one again uses the Lagrange multipliers
method and considers a new extended Hamiltonian

H̃2(x, u, px, pu) = H0 + µ1Φ1 + µ2Φ2. (61)

According to Dirac’s method, one must impose time preservation for both constraints
Φ1 and Φ2 with the extended Hamiltonian H̃2:

Φ̇1 =
{

Φ1, H̃2
}
= 0,

Φ̇2 =
{

Φ2, H̃2
}
= 0,

(62)

that is
{Φ1, H0}+ µ2{Φ1, Φ2} = 0

{Φ2, H0}+ µ1{Φ2, Φ1} = 0,

The above system can be written as(
{Φ1, H0}
{Φ2, H0}

)
+

(
0 {Φ1, Φ2}

−{Φ1, Φ2} 0

)(
µ1
µ2

)
=

(
0
0

)
.

The matrix

∆ =

(
0 {Φ1, Φ2}

−{Φ1, Φ2} 0

)
is called Dirac matrix. If the Dirac matrix is invertible, the above equation system can be
solved for µ1 and µ2, and in this situation, no new constraint appears in the theory.
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Now

{Φ1, Φ2} = {pu, Φ2} =
∂Φ2

∂u
=

∂2H0

∂u2

so

∆ =

(
0 ∂2 H0

∂u2

− ∂2 H0
∂u2 0

)
.

If

∂2H0

∂u2 6= 0 (63)

then ∆ matrix is invertible, and no new constraint appears. In this case, the constraint set
{Φ1, Φ2} is termed a second-class one (see [34–37] for details). Note that for a large class of
economic systems, such as the linear quadratic ones, the condition (63) is fulfilled.

In summary, from a phase-space optics, the optimal control theory corresponds to a
second-class constrained system, defined by the Hamiltonian H0 = F(x, u, t) + px f (x, u, t)
and the two second-class constraints Φ1 = pu = 0 and Φ2 = ∂H0

∂u = ∂F(x,u,t)
∂u + px

∂ f (x,u,t)
∂u = 0.

Now, one can go further by trying to quantize this classical system by imposing
canonical commutations relations for the phase-space variables (x, u, px, pu):

[x̂, p̂x] = ih̄I [û, p̂u] = ih̄I (64)

and where any other commutator is zero. Thus, the positions x, u and the momentum
variables px, pu become operators, which can be represented in a function space (Hilbert
space) as

x̂ = x p̂x = −ih̄
∂

∂x

û = u p̂u = −ih̄
∂

∂u

(65)

The time-dependent Schrödinger equation associated to the Hamiltonian H0 is

Ĥ0(x̂, û, p̂x, p̂u)Ψ(x, u, t) = ih̄
∂

∂t
Ψ(x, u, t)

or (
F(x, u, t)− ih̄ f (x, u, t)

∂

∂x

)
Ψ(x, u, t) = ih̄

∂Ψ(x, u, t)
∂t

, (66)

Note that for the quantization process, a right-side operator order was chosen for the
momentum operator.

Following Dirac, the only physically admissible solutions ΨP of the Schrödinger
Equation (66) satisfy the constraints Φ1 = pu = 0 and Φ2 = ∂H0

∂u = ∂F(x,u,t)
∂u + px

∂ f (x,u,t)
∂u = 0

at quantum level, that is, as operator equations acting on the wave function ΨP

Φ̂1ΨP = 0,

Φ̂2ΨP = 0.

or explicitly

−ih̄
∂

∂u
ΨP = 0 (67)

(
∂F(x, u, t)

∂u
− ih̄

∂ f (x, u, t)
∂u

∂

∂x

)
ΨP = 0 (68)
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and also the Schrödinger equation(
F(x, u, t)− ih̄ f (x, u, t)

∂

∂x

)
ΨP = ih̄

∂

∂t
ΨP. (69)

Equation (67) implies that ΨP does not depend on u, so ΨP = ΨP(x, t). Now, if one
write the wave function in the form

ΨP(x, t) = e
i
h̄ S(x,t)

the quantum Equations (68) and (69) becomes the following equations for S(x, t)

∂F(x, u, t)
∂u

+
∂ f (x, u, t)

∂u
∂S(x, t)

∂x
= 0, (70)

F(x, u, t) + f (x, u, t)
∂S(x, t)

∂x
= −∂S(x, t)

∂t
(71)

Note that the above two equations are h̄-independent, due to the linear character of
the Hamiltonian operator H0 and the quantum constraint (68), in the momentum operator
p̂x = −ih̄ ∂

∂x . Also, Equations (70) and (71) are equivalent to a single Hamilton–Jacobi–
Bellman Equation (26)

max
u

(
F(x, u, t) + f (x, u, t)

∂S(x, t)
∂x

)
= −∂S(x, t)

∂t
,

if the S(x, t) is identified with the optimal value function J(x, t) [28]. Thus, the Bellman
approach to the optimal control problem is the right quantization of the Pontryagin theory.
For more details about this topic, the elimination of the second-class constraints at the
classical level, different quantization schemes, and issues related to the quantization process,
see [22,25].

4. Open/Closed-Loop Strategies and Physics

The past two sections deal with control theory and the physicist’s view of it as a
second-class constrained system in the phase-space. So after this digression, we enter the
principal objective of this paper, that is, to invert the optics of the problem: instead of
seeing the control theory as a physical system, one can consider the classical and quantum
physical systems from the point of view of control theory. We will start with an analysis of
the classical theory.

4.1. Open/Closed-Loop Strategies and Classical Mechanics

From an economic or dynamic optimization point of view, the problem of optimizing
the Action (35) is analogous to an optimal control problem but without the control variable
u. As seen in the previous section, the solutions to the control problem are given by the
Pontryagin Equations (6) plus the transversality condition. Note that the first two Pontryagin
equations in (6) are precisely the Hamiltonian equations of motion (39) if one identifies the
Lagrangian multiplier λ with the canonical momentum px. Because Pontryagin theory has
open-loop strategies (x(t) and λ(t)) are independent), the Hamiltonian theory can then be
considered as an open-loop model, similar to Pontryagin’s theory.

One may ask: can closed-loop strategies occur in physical systems as in economic systems?
As is shown in this paper, the answer is affirmative, and they appear naturally in the

context of canonical transformations. In order to give a first clue to the answer to the above
question, suppose that one imposes a constraint over the phase-space of the form

Φ(x, px, t) = 0. (72)
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This constraint represents at each time a surface in the phase-space (a line in our
bi-dimensional case) where the system can evolve (see Figure 1).

Figure 1. Constraint over the phase-space.

Actually, one can write p in terms of x from (72) by solving the constraint:

px = px(x, t). (73)

Using the analogy of the momentum p with the Lagrangian multiplier λ, Equation (73)
corresponds to the closed-loop λ strategy from an economic point of view. Thus, x and
p are not independent in this case, and their variations are related by δpx = ∂px

∂x δx. By
replacing in (37) and using the fact that the endpoints of x are fixed, one arrives at

δA =
∫ t1

t0

[
−∂px

∂t
− ∂H

∂x
− ∂H

∂px

∂px

∂x

]
δx dt. (74)

By defining the reduced Hamiltonian H∗(x, t) = H(x, px(x, t), t), Equation (74) can be
written as

δA =
∫ t1

t0

[
−∂px

∂t
− ∂H∗

∂x

]
δx dt. (75)

The optimization of the action then gives

−∂px

∂t
− ∂H∗

∂x
= 0. (76)

This last equation is a consistency condition that the closed-loop strategy (73) must
satisfy, to give an extremal of the action. That is, if px = px(x, t) satisfies (76), then
px = px(x, t) is an optimal closed-loop strategy.

Now, if the closed-loop momentum strategy px = px(x, t) is just the derivative of
some function S(x, t), such as

px(x, t) =
∂S(x, t)

∂x
, (77)

condition (76) gives
∂

∂x

[
−∂S(x, t)

∂t
− H∗(x, t)

]
= 0. (78)

So, one obtains, by integration, that

−∂S(x, t)
∂t

− H(x,
∂S(x, t)

∂x
) = g(t) (79)
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for some function g of time. The above equation is just an inhomogeneous Hamilton–
Jacobi Equation. Thus, the derivative of the Hamilton–Jacobi Equation can be seen as the
consistency condition to give the Action an extremal in the closed-loop px strategy case.
Also, this small analysis implies that closed-loop momentum strategies are closely related
to the Hamilton–Jacobi Equation.

Now, it is well known that the Hamilton–Jacobi Equation appears in classical mechanics
in the context of the canonical transformations, but how and where do the closed-loop
px = px(x, t) strategies appear there? In the next section, a short review of canonical
transformations will be given, and it will elucidate how the closed-loop strategies appear
in that context.

4.2. Canonical Transformations and Closed-Loop Strategies

The Hamilton–Jacobi Equation can be considered as a bridge between nature’s classical
and quantum descriptions. The Hamilton–Jacobi Equation is obtained from the quantum
sector, taking the limit h̄ → 0 of a particular form of the Schrödinger equation called the
quantum Hamilton–Jacobi Equation (see Section 5 for details). Instead, from the pure classical
mechanical description, the Hamilton–Jacobi Equation can be obtained using the canonical
transformation framework. Canonical transformations are coordinate transformations in
the Hamiltonian mechanics’ phase-space (x, px). Thus, two observers are present in this
framework, each associated with a coordinate system. The first one is the standard Cartesian
system. But, the second one is special: it is constructed with the trajectories that are solutions
of the same Hamiltonian equations, i.e., the solutions of the Newton equations. Thus, one
hopes from the point of view of the second observer that the solution of the equation of
motion is described by constant values.

To understand how the canonical transformations method works, consider a general
phase-space coordinate transformation of the form

Q = Q(x, px) P = P(x, px). (80)

The transformation is called canonical if the Hamiltonian equations of motions are
invariant under (80), that is, if

Q̇ =
∂H̃
∂P

, Ṗ = −∂H̃
∂Q

, (81)

where

H̃(P, Q, t) = H(x, px, t) +
∂F(x, Q, t)

∂t
. (82)

The function F is called the generator of the canonical transformation, and the
coordinate transformation (80) can be reconstructed from F through Equations [38,39]

px =
∂F(x, Q, t)

∂x
, −P =

∂F(x, Q, t)
∂Q

. (83)

One must note at this point that the Hamiltonian Equation (39) refers to a unique
coordinate system (in this case, a Cartesian coordinate system). So, the Hamilton equations
in (39) are “single observer” equations. Instead, the canonical transformation brings a new
second observer into the problem, because one has two different coordinate systems: the
initial Cartesian (x, px) and the second one (Q, P). So, the theory of canonical transformations
is a “two observers” view of classical mechanics. This characteristic induces the closed-loop
px-strategies from a purely classical point of view (closed-loop px-strategies can also be
induced from quantum mechanics to the classical realm, as we shall see later).

The Hamilton–Jacobi theory relies on considerable freedom in choosing F(x, Q, t). This
theory does not work directly with F, but with its Legendre transformation S defined by

S(x, P, t) = F(x, Q, t) + PQ (84)
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In this case, the canonical transformation is reconstructed via the equations

px =
∂S(x, P, t)

∂x
(85)

Q =
∂S(x, P, t)

∂P
(86)

and the respective Hamiltonians are related by

H̃(P, Q, t) = H(x, px, t) +
∂S(x, P, t)

∂t
(87)

Note again that one has huge freedom in choosing S. The Hamilton–Jacobi theory
corresponds to the choice of S that makes the second-observer Hamiltonian H̃(Q, P)
equal zero:

H̃(P, Q, t) = 0. (88)

So, the equations of motion for the second observer are

Q̇ = 0, Ṗ = 0. (89)

Thus, for the second observer, the dynamical variable remains constant in time:

Q(t) = Q0, P(t) = P0. (90)

Note that this is possible only if the second coordinate system (P, Q) corresponds to
the trajectories of the solution of the Hamilton equations. Only in this way can the solutions
of the equations of motion have constant values. However, what does the first observer
see? First, due to Equation (90), the coordinate transformations (80) give

Q0 = Q(x, p, t), P0 = P(x, p, t), (91)

but each of these equations defines constant (Q, P) coordinate lines. These are constraints
over the phase-space (px, x) of the first observer, from which one can generate two different
closed-loop px-strategies according to Equation (72) (See Figure 2).

Figure 2. Q and P constraints over the phase-space.

Thus, the “two observers” perspective of classical mechanics, through the method of
canonical transformation, is responsible for the generation of the closed-loop px-strategies.
From (91), it is not clear if the px closed-loops strategies thus generated satisfy the consistency
condition (76) or if they satisfy the second condition (77) to obtain a Hamilton–Jacobi
Equation as in (79) for S. Instead of using (91), one can see these constant coordinate lines
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in terms of Equations (85) and (86). These equations are equivalent to (91), because the
canonical transformation can be reconstructed from (85) and (86).

A constant P0-line in (91) is equivalent (from (85)) to

px =
∂S(x, P0, t)

∂x
, (92)

thus, the constant P0-line in (91) satisfies (77). From (87) and (88), S(x, t) satisfies the
Hamilton–Jacobi Equation as in (79) with g(t) = 0. This implies that a closed-loop strategy
generated by (92) satisfies the consistency relation (76), so (92) defines a true optimal
closed-loop px strategy.

For the Q0 constant coordinate line in (91), one has, however, due to (86), that

Q0 =
∂S(x, P, t)

∂P
, (93)

but, from this equation, one cannot obtain px in terms of x, so this line does not generate
a px closed-loop strategy at all. This is due to the structure of Equations (85) and (86).
In order to reconstruct the canonical transformation (80), it is necessary to invert the
system (85) and (86). Note that only from (85) can the momentum P be written in terms of
the first-observer variables as P = P(x, px, t). But, from (86) alone, one cannot solve Q in
terms of the x, px. The other Equation (85) is needed to do that. Thus, a constant Q0-line
alone can not generate a true closed-loop px = px(x, t) strategy.

In this way, closed-loop px strategies appear in classical mechanics due to the two
observers’ interpretation of the canonical transformation theory. These closed-loop strategies
are inert, similarly to how the optimal u∗ closed-loop ones are inert in control theory. That
is because both closed-loop approaches px and u∗ give the same dynamical equation of the
open-loop case. For the closed-loop px case, the open-loop dynamics (analogous to those
given by Pontryagin’s equations) are provided by the Hamiltonian equations of motion of
the first observer in the (x, px) phase-space.

4.3. Quantum Mechanics and Closed-Loop Strategies

In this section, the origins of the Hamilton–Jacobi–Bellman equation that appears in
the limit h̄ → 0 in the quantum phenomena will be explained as a consequence of the
emergence of closed-loop px-strategies in the quantum world.

Consider the Schrödinger equation for a non-relativistic particle of mass m:

− h̄2

2m
∂2Ψ(x, t)

∂x2 + U(x)Ψ(x, t) = ih̄
∂Ψ(x, t)

∂t
. (94)

Writing the wave function in the form

Ψ(x, t) = e
i
h̄ S(x,t), (95)

and by substituting (95) into the Schrödinger equation, the following equation, called the
quantum Hamilton–Jacobi Equation for S(x, t), is obtained:

1
2m

(∂S(x, t)
∂x

)2
+ U(x)− ih̄

2m
∂2S(x, t)

∂x2 = −∂S(x, t)
∂t

. (96)

Note that this equation is completely equivalent to Schrödinger’s equation, but here,
the classical and quantum realms can be clearly identified. In fact, by taking the limit h̄→ 0
in (96), one obtains

1
2m

(∂S(x, t)
∂x

)2
+ U(x) = −∂S(x, t)

∂t
. (97)
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Equation (97) is just the classical Hamilton–Jacobi Equation

H(x,
∂S(x, t)

∂x
) = −∂S(x, t)

∂t
, (98)

associated with the classical Hamiltonian function of the non-relativistic particle

H(x, px) =
p2

x
2m

+ U(x), (99)

where one must identify px with the derivative of S

px = px(x, t) =
∂S(x, t)

∂x
. (100)

to make contact with the classical Hamiltonian theory. And, it is precisely this identification
which generates the closed-loop px strategy through (100). Note that it is induced from
the quantum realm to the classical world, in the limit h̄ → 0, of the quantum Hamilton–
Jacobi Equation. The identification in (100) thus comes from a pure quantum description.
Consider the momentum operator

p̂x = −ih̄
∂

∂x
. (101)

This operator is characterized by its eigenfunctions and eigenvalues:

p̂xΦpx (x) = pxΦpx (x). (102)

where the solution of this equation gives

Φpx (x) = e
i
h̄ px x. (103)

In this context, px and x are independent variables, and the eigenfunction (103)
corresponds to states with well-defined values of the momentum.

Note now that if one applies the momentum operator to a generic wave function Ψ,
which is a solution of the Schrödinger equation (written in the “momentum form” (95)),
one obtains

p̂xΨ(x, t) =
∂S(x, t)

∂x
Ψ(x, t). (104)

By looking at the wave function as a vector with a continuous index x, the above
equation implies that (locally at each point x) the momentum operator is diagonal so that
any wave function can be seen as an eigenstate of the momentum operator with momentum
eigenvalue ∂S(x,t)

∂x . Thus, one must identify the momentum eigenvalue px in this quantum
state with the derivative of the S function through (100). This identification generates the
closed-loop px-strategies directly in the quantum world.

On the other hand, the same Heisenberg canonical commutation relations

[x̂, P̂x] = x̂P̂x − P̂x x̂ = ih̄ Î. (105)

can be seen as a constraint in the non-commutative phase-space (x̂, P̂x). Thus, from (105)
one could “solve” the momentum operator P̂x in terms of the x̂ operator. This necessarily
implies the existence of a certain relation between P̂x and x̂ or between their eigenvalues.
The representation of the canonical operator as a differential operator acting on a function
space or Hilbert space as

x̂ → x, p̂x → −ih̄
∂

∂x
(106)
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is equivalent to solving the constraint (105), because on any wave function Ψ(x, t),
Equation (105) is satisfied identically. The memory of the quantum constraint (105) is
then transferred locally to the momentum eigenvalue, according to (104). In a sense,
the representation of the wave function as Ψ(x, t) = e

i
h̄ S(x,t) locally diagonalizes the

momentum operator p̂x over any quantum state, and (96) is just the Schrödinger equation
in this diagonal basis. Note that all of this is a kinematic effect created by the Heisenberg
commutation relation (105); the dynamical effects appear when the explicit form of S(x, t)
is needed, and for that, one must solve the full quantum Hamilton–Jacobi Equation (96)
explicitly. Note that quantum mechanics, as in (105), can be viewed as a constrained system
in a non-commutative space, so one would apply a generalization of Dirac’s method [34–37]
to non-commutative spaces [40] to study quantum mechanical systems.

We can say that closed-loop px-strategies correspond to a pure quantum phenomenon
and are a consequence of Heisenberg’s uncertainty principle. In an arbitrary quantum
state, momentum and position cannot be independent; they are related through the
non-commutative character of the position and momentum operators defined by the
canonical commutation relation (105). A less-defined position state would emerge in a
more-defined momentum state. Thus, these two variables must depend on one another
in some way. Relation (100) is tantamount to a conversation between them. Only in a
pure-momentum state, as given in (103), the link disappears and position and momentum
become independent variables.

In fact, in a pure-momentum state, px(x, t) = p0
x is constant, that is, all of the

eigenvalues are the same, so Equation (100) gives

S(x, t) = p0
xx + φ(t) (107)

as a solution, where φ(t) is some function of time. Thus, the wave function is

Ψ(x, t) = e
i
h̄ S(x,t) = e

i
h̄ (p0

x x+φ(t)) = e
i
h̄ φ(t)Φp0

x
(x), (108)

which is the same momentum eigenstate amplified by a temporal arbitrary phase. Then,
the linear character of S(x, t) in terms of x implies that px and x are independent variables,
and no closed-loop px strategy exists in this case. The same can be said for a pure-
position eigenstate.

Thus, closed-loop px-strategies are an inherent part of the quantum mechanical world
and permeate the classical world in the limit h̄→ 0 through the Hamilton–Jacobi Equation.

5. Some Examples

In the following Sections 5.1 and 5.2, we analyze some common textbook examples
from closed-loop strategies’ point of view. Section 5.3 gives a quantum mechanical example,
and Sections 5.4 and 5.5 give some non-canonical quantum examples that illustrate the
dependence of closed-loop strategy on the explicit form of the canonical commutations
relations, that is, the dependence on the quantum constraint. Finally, in Section 5.5 we give
a quantum control example.

5.1. The Stationary Case

The quantum and classical Hamilton–Jacobi Equations (96) and (97) are non-stationary
equations, that is, they depend explicitly on time. In quantum mechanics, stationary states
play a fundamental role. They are defined by

Ψ(x, t) = e−
i
h̄ EtΦ(x). (109)
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By substituting this into the time-dependent Schrödinger Equation (94), the time-
independent or stationary Schrödinger equation is obtained:

− h̄2

2m
∂2Ψ(x)

∂x2 + U(x)Ψ(x) = EΨ(x). (110)

Now, by writing
Ψ(x) = e

i
h̄ W(x) (111)

and substituting into (110), the stationary quantum Hamilton–Jacobi Equation holds:

1
2m

(∂W(x)
∂x

)2
+ U(x)− ih̄

2m
∂2W(x)

∂x2 = E. (112)

Taking again the classical limit h̄→ 0 in (112), the stationary classical Hamilton–Jacobi
Equation appears:

1
2m

(∂W(x)
∂x

)2
+ U(x) = E. (113)

Due to (109) and (111), we have Ψ(x, t) = e
i
h̄ S(x,t) = e

i
h̄ (W(x)−Et), which implies that

S(x, t) = W(x)− Et (114)

for the stationary case. In this case, the closed-loop px-strategies are given by

px = px(x, t) =
∂W(x)

∂x
.

5.2. The Non-Stationary Case

But what about the non-stationary closed-loop px-strategies in the classical limit? In
order to analyze this case, consider the example of a free particle, that is, U(x) = 0. The
non-stationary classical Hamilton–Jacobi Equation is now

1
2m

(∂S(x, t)
∂x

)2
= −∂S(x, t)

∂t
. (115)

One can find a solution of the form S(x, t) = 1
2 a(t)x2, so by substituting in (115),

one obtains a(t) = −1
(P0− t

m )
, so S(x, t) = 1

2
−x2

(P0− t
m )

, and the corresponding closed-loop px

strategy is

px(x, t) =
∂S(x, t)

∂x
=

−x
(P0 − t

m )
. (116)

One can evaluate x(t) using Equation (93)

Q0 =
∂S(x, P0, t)

∂P0
, (117)

where the integration constant P0 must be identified with the constant momentum for the
second observer in the coordinate system (Q, P). Thus

Q0 =
1
2

x2

(P0 − t
m )2

, (118)

from which x(t) is computed as

x(t) =

√
2
(

P0 −
t
m

)2
Q0 =

√
2Q0

(
P0 −

t
m

)
. (119)
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The associated open-loop px(t) strategy is found by px(t) = px(x(t), t), similarly to
Equation (20). Thus, by substituting (119) into (116):

px(t) =
−x(t)

(P0 − t
m )

=
−
√

2Q0(P0 − t
m )

(P0 − t
m )

= −
√

2Q0 = p0, (120)

so

x(t) = −p0

(
P0 −

t
m

)
= p0

t
m

+ x0, (121)

where x0 = −P0 p0. These last equations are the solutions for the motion of a free particle
of course!

Now from the Hamiltonian equations, one obtains the open-loop dynamics for the
free particle:

ẋ =
px

m
, ṗx = −∂U(x)

∂x
= 0, (122)

so the open-loops dynamics are

x(t) =
p0

m
t + x0, px(t) = p0. (123)

Then, the open-loop px(t) strategy coming from the Hamiltonian equations of motion
is equivalent to the non-stationary closed-loop px(x, t) strategy coming from the non-
stationary classical Hamilton–Jacobi Equation. This equivalence is valid because the classical
Hamilton–Jacobi Equation approach corresponds to a “two-observer” point of view of
classical mechanics. The S(x, t) function is just the generator of the canonical transformation,
which leaves the Hamiltonian equations invariant. Thus, there are two schemes:

1. The Hamiltonian “one observer” approach with its open-loop px(t)-strategies;
2. The Hamilton–Jacobi “two observer” approach with its closed-loop px(x, t)-strategies.

Closed-loop strategies px(x, t) coming from the Hamilton–Jacobi Equation are similar to the
inert optimal closed-loop strategies u∗(x, t) of Pontryagin’s approach (in optimal control
theory) in the sense that they are equivalent to the open-loop ones.

Note that this equivalence is not generally valid for control theory when analyzed
in the phase-space, as conducted in Section 3.4. As is shown in [37,41], for second-class
systems, the description of a mechanical system in terms of canonical transformations
(together with the Hamilton–Jacobi Equation for the S function) can be inconsistent. It is
due that the second-class systems violate the Carathéodory’s integrability conditions. By
using the methodology developed in [41], in [26], there is proof that there exists a class of
optimal controls problems, called regular subclass, in which the functions F(x, u, t) and
f (x, u, t) in (1) and (2) have the form

F(x, u, t) = F0(x) + F1u +
1
2

F2u2,

f (x, u, t) = f0(x) + f1u,

(where F1, F2 and f1 are constants and F0(x) and f0(x) are arbitrary continuous functions),
such that for this subclass:

(i) The Hamilton–Jacobi Equation is well-defined;
(ii) The solution to the Hamilton–Jacobi Equation gives the same dynamics as the

Pontryagin equations.

For more general forms of the F(x, u, t) and f (x, u, t) functions, it is not clear whether
the problem is consistent or if the dynamics of the Hamilton–Jacobi–Bellman are equivalent
to the Pontryagin equations in the phase-space.
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5.3. The Pure Quantum Limit and Closed-Loop Strategies

In the previous section, the classical limit h̄ → 0 was taken, and its characteristics
were explored in terms of the closed-loop strategies. In this section, the inverse limit will
be taken, that is, h̄ >> 1, and the consequences of a higher non-commutative system of
quantum variables will be explored.

Consider the non-stationary quantum Hamilton–Jacobi Equation (96). Taking the limit
h̄ >> 1 and supposing that the time derivative of the S function has a higher value,

− ih̄
2m

∂2S(x, t)
∂x2 = −∂S(x, t)

∂t
. (124)

or, what is the same,

− h̄2

2m
∂2S(x, t)

∂x2 = ih̄
∂S(x, t)

∂t
. (125)

But, this is the free-particle Schrödinger equation for S(x, t). In this way, one can write

S(x, t) = e
i
h̄ T(x,t) (126)

where T(x, t) satisfies the quantum Hamilton–Jacobi Equation

1
2m

(∂T(x, t)
∂x

)2
− ih̄

2m
∂2T(x, t)

∂x2 = −∂T(x, t)
∂t

(127)

and the wave function is given by

Ψ(x, t) = e
i
h̄ S(x,t) = e

i
h̄ e

i
h̄ T(x,t)

. (128)

The corresponding closed-loop px strategy is

px =
∂S(x, t)

∂x
=

i
h̄

∂T(x, t)
∂x

S(x, t) (129)

Note that ∂T(x,t)
∂x can be interpreted as a closed-loop pT strategy for the quantum

Hamilton–Jacobi Equation (127). Thus, denoting the closed-loop px strategy for (124) by
pS(x, t), then both strategies are related by

pS(x, t) =
i
h̄

S(x, t) pT(x, t) (130)

Again, if the time derivative of T has a higher value, and as h̄ >> 1, the quantum
Hamilton–Jacobi for T(x, t) (127) is in this limit again a Schrödinger equation,

− h̄2

2m
∂2T(x, t)

∂x2 = ih̄
∂T(x, t)

∂t
. (131)

Hence, we can write
T(x, t) = e

i
h̄ U(x,t) (132)

where U(x, t) satisfies

1
2m

(∂U(x, t)
∂x

)2
− ih̄

2m
∂2U(x, t)

∂x2 = −∂U(x, t)
∂t

. (133)

and the wave function is

Ψ(x, t) = e
i
h̄ S(x,t) = e

i
h̄ e

i
h̄ e

i
h̄ U(x,t)

(134)
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Putting pU = ∂U(x,t)
∂x the closed-loop strategy associated to the quantum Hamilton–

Jacobi Equation for U (133), the corresponding closed-loop pS strategy is then in this case

pS(x, t) =
i
h̄

pU(x, t)S(x, t)T(x, t). (135)

Since one can keep iterating this procedure to infinity, quantum mechanical systems
can admit multistage closed-loop strategies, and they are connected in a strongly non-linear
way, as in (134).

5.4. A Non-Canonical Example

It is well known that quantum gravity effects, modelled by string theory, loop quantum
gravity, or black hole physics, predict the existence of a Generalized Uncertainty Principle
(GUP), which can change the usual canonical commutation relations [42–48] and its
implications for entanglement and the Hamilton–Jacobi Equation [49–53]. In this case,
the canonical commutation relations

[x̂, p̂x] = ih̄I (136)

are replaced by a more general one of the type

[x̂, p̂x] = ih̄
(
I+ F(x̂, p̂x)

)
(137)

for some function F(x, px). The form of the quantum algebra (137) guarantees that the
system has a classical limit when h̄ goes to zero. Now, if one sees the commutation relations
as a constraint in a noncommutative space, then if one “solves” p̂x in terms of x̂ from (137),
then an explicit form of p̂x in terms of x̂ would depend on the function F. Thus, the
expression (100) for px(x, t) would depend on F. To explicitly show that dependence, we
consider two simple toy examples of GUP algebras below.

5.4.1. A GUP Algebra Depending on x̂

As an example this dependence on GUP, consider the following commutation relations

[x̂, p̂x] = ih̄
(

I + αx̂
)

(138)

for which F(x, p) = αx, and where α is a constant. An operator representation of the above
commutation relations is

x̂ = x (139)

p̂x = −ih̄
( ∂

∂x
+ αx

∂

∂x
)
= −ih̄(1 + αx)

∂

∂x
(140)

The momentum eigenstates are, in this case,

p̂xΦpx (x) = pxΦpx (x) (141)

−ih̄(1 + αx) ∂Φpx
∂x = pxΦpx (142)

so
Φpx (x) = C(1 + αx)

ipx
αh̄ = Ce

ipx
h̄ ln[(1+αx)

1
α ]. (143)

Consider now the usual non-relativist classical Hamiltonian (99). The quantization of
this Hamiltonian by the rule (138), implies the following Schrödinger equation

−h̄2

2m
(1 + αx)

∂

∂x
[
(1 + αx)

∂

∂x
]
Ψ(x, t) + V(x)Ψ(x, t) = ih̄

∂Ψ(x, t)
∂t

(144)
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or

−h̄2

2m
[
α(1 + αx)

∂Ψ(x, t)
∂x

+ (1 + αx)2 ∂2Ψ(x, t)
∂x2

]
+ V(x)Ψ(x, t) = ih̄

∂Ψ(x, t)
∂t

(145)

The corresponding Hamilton–Jacobi Equation is obtained from (95), by using the
fact that

∂Ψ(x,t)
∂x = e

i
h̄ S
(

∂S
∂x

)
i
h̄ (146)

∂2Ψ(x,t)
∂x2 = e

i
h̄ S
(

∂S
∂x

)2( i
h̄

)2
+ i

h̄ e
i
h̄ S
(

∂2S
∂x2

)
(147)

so (145) becomes

−h̄2

2m

[
α(1 + αx)e

i
h̄ S
(

∂S
∂x

)
i
h̄ + (1 + αx)2

(
e

i
h̄ S i2

h̄2

(
∂S
∂x

)2
+ x2 i

h̄ e
i
h̄ S ∂2S

∂x2

)]
(148)

+V(x)e
i
h̄ S = ih̄e

i
h̄ S i

h̄
∂S
∂t (149)

or
(1 + αx)2

2m

(
∂S
∂x

)2
+ V(x)− ih̄

2m
[
(1 + αx)

∂S
∂x

+ (1 + αx)2 ∂2S
∂x2

]
= −∂S

∂t
(150)

By taking the classical limit h̄→ 0, one arrives to the modified Hamilton–Jacobi equation

(1 + αx)2

2m

(
∂S
∂x

)2
+ V(x) = −∂S

∂t
. (151)

Now, one must identify px(x, t), not with the derivative of S as in (100), but instead with

px(x, t) = (1 + αx)
∂S(x, t)

∂x
. (152)

Thus, the closed-loop px strategy, depends on the form of the GUP. In fact, the
momentum operator (140) acting on (95) gives

p̂xΨ(x, t) = −ih̄(1 + αx)
∂

∂x
e

i
h̄ S(x,t) = (1 + αx)

∂S
∂x

Ψ(x, t) (153)

so from the above equation, one can identify again the local momentum px(x, t) again with
(1 + αx) ∂S

∂x .
If, instead of the commuting relation (138), one can consider the generalization

[x̂, p̂x] = ih̄
(

I + αx̂n) (154)

for n = 1, 2, 3 . . ., the momentum operator has the representation

p̂x = −ih̄(1 + αxn)
∂

∂x
(155)

so when acting on the wave function (95) it gives

p̂xΨ(x, t) = −ih̄(1 + αxn)
∂

∂x
e

i
h̄ S(x,t) = (1 + αxn)

∂S
∂x

Ψ(x, t) (156)

then the corresponding closed-loop px(x, t) strategy is in this case

px(x, t) = (1 + αxn)
∂S(x, t)

∂x
. (157)
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5.4.2. A GUP Algebra Depending on the Momentum p̂x

Consider now the following GUP commutation relations depending on the momentum

[x̂, p̂x] = ih̄
(
I+ β p̂x

)
(158)

These commutation relations can be represented by the differential operators

x̂ = x (159)

p̂x =
1
β

(
eβ p̂0 − I

)
(160)

where p̂0 = −ih̄ ∂
∂x is the standard momentum operator for β = 0 case.

The action of the momentum operator (160) on the wave function (95) is

p̂xΨ(x, t) =
1
β

(
eβ p̂0 − I

)
e

i
h̄ S(x,t) (161)

By expanding the exponential operator eβ p̂0 , one can show that

1
β

(
eβ p̂0 − I

)
e

i
h̄ S(x,t) = 1

β

(
eβ h̄

i
∂

∂x − I
)
e

i
h̄ S(x,t) = (162)[ 1

β

(
eβ( ∂S

∂x ) − 1
)
+ i

βh̄

(
e
(

βh̄
i

)
∂

∂x − I− βh̄
i

∂
∂x

)
S(x, t) + h̄

i Θ(x, t)
]
e

i
h̄ S(x,t) (163)

where the Θ function contains products between powers of ( ∂S
∂x ) and high-order derivatives

of S(x, t). For example, the first terms of Θ are

Θ(x, t) = 1
2 β2
(

∂S
∂x

)
∂2S
∂x2 +

1
4 β3
(

∂S
∂x

)2
∂2S
∂x2 + (164)

1
8

(
h̄
i

)
β3
(

∂2S
∂x2

)2
+ 1

6

(
h̄
i

)
β3
(

∂S
∂x

)(
∂3S
∂x3

)
+ . . . (165)

so
p̂xΨ(x, t) = p(x, t)Ψ(x, t) (166)

where the local quantum momentum p(x, t) is

p(x, t) =
1
β

(
eβ( ∂S

∂x ) − 1
)
+

i
βh̄

(
e
(

βh̄
i

)
∂

∂x − I− βh̄
i

∂

∂x

)
S(x, t) +

h̄
i

Θ(x, t) (167)

Note that p(x, t) is a complex number in this case. In the classical limit h̄ → 0, the
local quantum momentum (167) becomes

p(x, t) =
1
β

(
eβ( ∂S

∂x ) − 1
)

(168)

because the operator
i

βh̄

(
e
(

βh̄
i

)
∂

∂x − I− βh̄
i

∂

∂x

)
(169)

goes to zero when h̄ → 0. The classical local momentum given by (168) could also be
obtained from the corresponding Hamilton–Jacobi Equation. The Schrödinger equation
associated with the Hamiltonian function (99) is in this case

1
2mβ2

(
eβ p̂0 − I

)(
eβ p̂0 − I

)
Ψ + V(x)Ψ = ih̄

∂Ψ
∂t

(170)

or
1

2mβ2

(
e2β p̂0 − 2eβ p̂0 + I

)
e

i
h̄ S(x,t) + V(x)e

i
h̄ S(x,t) = −∂S(x, t)

∂t
e

i
h̄ S(x,t) (171)
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Due to the fact that in the classical limit h̄→ 0

eβ p̂0 e
i
h̄ S(x,t) = eβ h̄

i
∂

∂x e
i
h̄ S(x,t) = eβ( ∂S

∂x )e
i
h̄ S(x,t) (172)

Equation (171) becomes in this classical limit

1
2mβ2

(
e2β( ∂S

∂x ) − 2eβ( ∂S
∂x ) + 1

)
e

i
h̄ S(x,t) + V(x)e

i
h̄ S(x,t) = −∂S(x, t)

∂t
e

i
h̄ S(x,t) (173)

that is
1

2mβ2

(
eβ( ∂S

∂x ) − 1
)2

+ V(x) = −∂S(x, t)
∂t

(174)

From the above equation, one can identify the corresponding classical closed-loop
strategy p(x, t) as the same as that given in (168). Thus, we see that the quantum commutation
relations (canonical or GUP) imply the existence of closed-loop strategies for the local
momentum, because these quantum commutation relations are constraints in a non-
commutative space.

5.5. A Quantum Control Example

At last, we consider a simple example of quantum control [54,55] defined by a single
spin particle ~S = 1

2 (σx, σy, σz), being σx, σy, and σz, which are the so-called Pauli matrices.
The Schrödinger equation for this particle in a magnetic field ~B = (Bx, By, Bz) is [54]

∂ψ

∂t
=

1
2
[
σzuz + σxux(t) + σyuy(t)

]
ψ, (175)

where the components Bx, By are considered as time-dependent control variables ux(t), uy(t),
and the Bz component is a fixed parameter uz.

By separating the two component spinor

ψ = ψR + iψI =

(
x1
x2

)
+ i
(

x3
x4

)
in its real and imaginary parts and doing the same with the Pauli matrices, the Schrödinger (175)
can be writing as a four vector equation of the form [54]

d~x
dt

=
1
2
[
Hxux(t) + Hyuy(t) + Hzuz

]
~x. (176)

where

Hx =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0



Hy =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0



Hz =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


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and

~x =


x1
x2
x3
x4


The quantum control problems consist thus in to minimize the functional [54]

J
(
ux, uy

)
= Φ(~x(T)) + k

∫ T

0

(
u2

x(t) + u2
y(t)

)
dt (177)

subject to the Schrödinger Equation (176).

5.5.1. Open-Loop Pontryagin Dynamics

Introducing a Lagrange multiplier for each scalar equation in the system (176), i.e.,
the vector

~λ =


λ1
λ2
λ3
λ4


the Pontryagin Hamiltonian h is

h = k
(

u2
x(t) + u2

y(t)
)
+

1
2
~λt[Hxux(t) + Hyuy(t) + Hzuz

]
~x (178)

The corresponding Pontryagin equations are for the state variables (spinor components)

~̇x =
1
2
[
Hxux(t) + Hyuy(t) + Hzuz

]
~x =

1
2

H~x (179)

and for the Lagrange multipliers

~̇λ =
1
2
[
Hxux(t) + Hyuy(t) + Hzuz

]
~λ =

1
2

H~λ (180)

where

H =


0 −uy −uz −ux

uy 0 −ux uz
uz ux 0 −uy
ux −uz uy 0

 (181)

The equation for the controls gives

ux = − 1
4k
~λtHx~x = −−λ1(t)x4(t)− λ2(t)x3(t) + λ3(t)x2(t) + λ4(t)x1(t)

4k
(182)

uy = − 1
4k
~λtHy~x = −−λ1(t)x2(t) + λ2(t)x1(t)− λ3(t)x4(t) + λ4(t)x3(t)

4k
(183)
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By replacing (182) and (183) in (181) one has that

H[~x,~λ] =


0 −

λ1(t)x2(t)− λ2(t)x1(t) + λ3(t)x4(t)− λ4(t)x3(t)
4k

−
−λ1(t)x2(t) + λ2(t)x1(t)− λ3(t)x4(t) + λ4(t)x3(t)

4k
0

uz −
−λ1(t)x4(t)− λ2(t)x3(t) + λ3(t)x2(t) + λ4(t)x1(t)

4k

−
−λ1(t)x4(t)− λ2(t)x3(t) + λ3(t)x2(t) + λ4(t)x1(t)

4k
−uz

−uz − λ1(t)x4(t)+λ2(t)x3(t)−λ3(t)x2(t)−λ4(t)x1(t)
4k

− λ1(t)x4(t)+λ2(t)x3(t)−λ3(t)x2(t)−λ4(t)x1(t)
4k uz

0 − λ1(t)x2(t)−λ2(t)x1(t)+λ3(t)x4(t)−λ4(t)x3(t)
4k

− −λ1(t)x2(t)+λ2(t)x1(t)−λ3(t)x4(t)+λ4(t)x3(t)
4k 0


(184)

The Hamiltonian matrix (184) gives for equations (179) and (180) a Ricatti-type system
of equations for both ~x and~λ. One must integrate these equations with the initial conditions
~x(0) = ~x0 for the state variables, and the final conditions (the transversality condition)

~λ(T) = (
∂Φ
∂x1

,
∂Φ
∂x2

,
∂Φ
∂x3

,
∂Φ
∂x4

)

for the Lagrangian multipliers. Note that due to the fact that the Hamiltonian matrix H
in (184) is antisymmetric, one has that

d||~x||2
dt

=
d
dt
(~xt ·~x) = 2~xt · d~x

dt
= ~xt H~x = ∑

i,j
xi Hijxj = 0 (185)

and the same is true for~λ

d||~λ||2
dt

=
d
dt
(~λt ·~λ) = 2~λt · d~λ

dt
= ~λtH~λ = ∑

i,j
λi Hijλj = 0. (186)

The above two equations imply that the norm of both vectors ~x and~λ remain constant
during the dynamical evolution. Also,

d
dt
~λt ·~x =

d~λt

dt
·~x +~λt · d~x

dt
=

1
2
(H~λ)t~x +

1
2
~λtH~x =

1
2

(
~λtHt~x +~λtH~x

)
=

1
2

(
−~λtH~x +~λtH~x

)
= 0 (187)

so
d
dt

(
||~λ|| ||~x|| cos(α)

)
= 0 (188)

and due to the fact that the norms of ~x and~λ are constant, the last equation implies that

d
dt

cos(α) = 0 (189)

so, the angle α between ~x and~λ remains constant. The vector system ~x(t),~λ(t) evolves in
time as a rigid structure with no relative motion. In this way, one can always decompose
~λ(t) in the form

~λ(t) = a~x(t) + b~x⊥(t) (190)

where a and b are constant, and ~x⊥ is an orthogonal vector to ~x. Let ~x⊥ = (a1, a2, a3, a4),
due to the fact that

~x ·~x⊥ = x1(t)a1(t) + x2(t)a2(t) + x3(t)a3(t) + x4(t)a4(t) = 0 (191)
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we can choose ~x⊥ as

~x⊥ =


a1(t)
a2(t)
a3(t)

− x1(t)a1(t)+x2(t)a2(t)+x3(t)a3(t)
x4(t)

 (192)

By replacing (190) in (179) and (180), one obtains

~̇x =
1
2

H[~x, a~x + b~x⊥]~x (193)

~̇x⊥ =
1
2

H[~x, a~x + b~x⊥]~x⊥. (194)

In this case, the controls (182) and (183) read as

ux = − 1
4k

(a~x + b~x⊥)tHx~x = − b
4k
~xt
⊥Hx~x (195)

uy = − 1
4k

(a~x + b~x⊥)t Hy~x = − b
4k
~xt
⊥Hy~x (196)

or explicitly

ux = −
b
(
−a1(t)x2

1(t)− a1(t)x2
4(t)− a2(t)x1(t)x2(t)− a2(t)x3(t)x4(t)− a3(t)x1(t)x3(t) + a3(t)x2(t)x4(t)

)
4kx4(t)

(197)

uy = −
b
(
−a1(t)x1(t)x3(t)− a1(t)x2(t)x4(t) + a2(t)x1(t)x4(t)− a2(t)x2(t)x3(t)− a3(t)x2

3(t)− a3(t)x2
4(t)

)
4kx4(t)

(198)

One can consider first the case b = 0, so~λ = a~x. In this case, the controls (195) and (196)
read as

ux = − 1
4k

a ~xtHx~x = 0 (199)

uy = − 1
4k

a ~xtHy~x = 0 (200)

so

H =


0 0 −uz 0
0 0 0 uz
uz 0 0 0
0 −uz 0 0

 (201)

and the equation of motion for ~x becomes
dx1
dt

dx2
dt

dx3
dt

dx4
dt

 =
1
2


0 0 −uz 0
0 0 0 uz
uz 0 0 0
0 −uz 0 0




x1
x2
x3
x4

 (202)
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or 
d
dt x1(t)
d
dt x2(t)
d
dt x3(t)
d
dt x4(t)

 =
1
2


−uzx3(t)
uzx4(t)
uzx1(t)
−uzx2(t)

 (203)

so
x1(t) = A1 sin( uz

2 t + φ1)
x2(t) = A2 sin( uz

2 t + φ2)
x3(t) = −A1 cos( uz

2 t + φ1)
x4(t) = −A2 cos( uz

2 t + φ2)

(204)

which is the usual sinusoidal solution.
The systems for ~x⊥ are

d
dt a1(t)

d
dt a2(t)

d
dt a3(t)

− (−a1(t)x1(t)−a2(t)x2(t)−a3(t)x3(t)) d
dt x4(t)

x2
4(t)

+

−a1(t) d
dt x1(t)−a2(t) d

dt x2(t)−a3(t) d
dt x3(t)

x4(t)
+

−x1(t) d
dt a1(t)−x2(t) d

dt a2(t)−x3(t) d
dt a3(t)

x4(t)



=

1
2



−uza3(t)

uz(−a1(t)x1(t)−a2(t)x2(t)−a3(t)x3(t))
x4(t)

uza1(t)

−uza2(t)



(205)

Note that there are three variables and four equations, so the system for ~x⊥ can be
inconsistent. For the particular case b = 0, if one replaces the derivatives of a1, a2, a3 from
the three first equations in the fourth one, it obtains the identity

−uza2(t)
2

=
−uza2(t)

2

thus, there is no contradiction this case.
Consider now the case a = 0, so~λ = b~x⊥. The systems for ~x are

d
dt

x1(t) =

+
b

8k
(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x1(t) + (−a1(t)x4(t)− a2(t)x3(t) + a3(t)x2(t))x4(t))

+
b

8k
(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x3(t) + (−a1(t)x2(t) + a2(t)x1(t)− a3(t)x4(t))x4(t))x2(t)

x4(t)

− 1
2

uzx3(t)
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d
dt

x2(t) =

+
b

8k
(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x1(t) + (−a1(t)x4(t)− a2(t)x3(t) + a3(t)x2(t))x4(t))x3(t)

x4(t)

− b
8k

b(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x3(t) + (−a1(t)x2(t) + a2(t)x1(t)− a3(t)x4(t))x4(t))x1(t)
x4(t)

+
1
2

uzx4(t)

d
dt

x3(t) =

− b
8k

(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x1(t) + (−a1(t)x4(t)− a2(t)x3(t) + a3(t)x2(t))x4(t))x2(t)
x4(t)

+
b

8k
(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x3(t) + (−a1(t)x2(t) + a2(t)x1(t)− a3(t)x4(t))x4(t))

+
1
2

uzx1(t)

d
dt

x4(t) =

− b
8k

(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x1(t) + (−a1(t)x4(t)− a2(t)x3(t) + a3(t)x2(t))x4(t))x1(t)
x4(t)

− b
8k

(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x3(t) + (−a1(t)x2(t) + a2(t)x1(t)− a3(t)x4(t))x4(t))x3(t)
x4(t)

− 1
2

uzx2(t)

whereas the systems for ~x⊥ are

d
dt

a1(t) =

+
b

8k
(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x1(t))

x2
4(t)

+
b

8k
((−a1(t)x4(t)− a2(t)x3(t) + a3(t)x2(t))x4(t))(−a1(t)x1(t)− a2(t)x2(t)− a3(t)x3(t))

x2
4(t)

+
b

8k
(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x3(t) + (−a1(t)x2(t) + a2(t)x1(t)− a3(t)x4(t))x4(t))a2(t)

x4(t)

− 1
2

uza3(t)

d
dt

a2(t) =

+
b

8k
(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x1(t) + (−a1(t)x4(t)− a2(t)x3(t) + a3(t)x2(t))x4(t))a3(t)

x4(t)

− b
8k

(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x3(t) + (−a1(t)x2(t) + a2(t)x1(t)− a3(t)x4(t))x4(t))a1(t)
x4(t)

+
1
2

uz(−a1(t)x1(t)− a2(t)x2(t)− a3(t)x3(t))
x4(t)
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d
dt

a3(t) =

− b
8k

(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x1(t) + (−a1(t)x4(t)− a2(t)x3(t) + a3(t)x2(t))x4(t))a2(t)
x4(t)

+
b

8k
(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x3(t))

x2
4(t)

+
b

8k
((−a1(t)x2(t) + a2(t)x1(t)− a3(t)x4(t))x4(t))(−a1(t)x1(t)− a2(t)x2(t)− a3(t)x3(t))

x2
4(t)

+
1
2

uza1(t)

The last equation is

−
(−a1(t)x1(t)− a2(t)x2(t)− a3(t)x3(t)) d

dt x4(t)
x2

4(t)
+

−a1(t) d
dt x1(t)− a2(t) d

dt x2(t)− a3(t) d
dt x3(t)− x1(t) d

dt a1(t)− x2(t) d
dt a2(t)− x3(t) d

dt a3(t)
x4(t)

= − b
8k

(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x1(t) + (−a1(t)x4(t)− a2(t)x3(t) + a3(t)x2(t))x4(t))a1(t)
x4(t)

− b
8k

(−(a1(t)x1(t) + a2(t)x2(t) + a3(t)x3(t))x3(t) + (−a1(t)x2(t) + a2(t)x1(t)− a3(t)x4(t))x4(t))a3(t)
x4(t)

− 1
2

uza2(t)

In this case, if one replaces the derivatives of a1, a2, a3 in the fourth equation, one does
not obtain an identity, but instead a contradiction, unless that b = 0. The same can be said
for the general case~λ(t) = a~x(t) + b~x⊥(t).

5.5.2. Closed-Loop Bellman Dynamics

Consider now the closed-loop feedbacks case, so one must write the Hamilton–Jacobi–
Bellman equation for the optimization problem (177)

max
ux ,uy

{
k
(

u2
x + u2

y

)
+

1
2

4

∑
i=1

4

∑
j=1

∂S
∂xi

Hij(~u)xj

}
= −∂S

∂t
(206)

where Hij(~u) are the matrix elements of the Hamiltonian matrix in (181). The maximization,
with respect to the control, gives

2kux +
1
2 ∑

j

∂S
∂xi

(Hx)ijxj = 0

2kuy +
1
2 ∑

j

∂S
∂xi

(
Hy
)

ijxj = 0
(207)

or

ux = − 1
4k

(∇S)t Hx~x = −
x1

∂S
∂x4

+ x2
∂S
∂x3
− x3

∂S
∂x2
− x4

∂S
∂x1

4k

uy = − 1
4k

(∇S)tHy~x = −
x1

∂S
∂x2
− x2

∂S
∂x1

+ x3
∂S
∂x4
− x4

∂S
∂x3

4k

(208)
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The HJB equation becomes

1
16k

(
8kuzx1

∂S
∂x3
− 8kuzx2

∂S
∂x4
− 8kuzx3

∂S
∂x1

+ 8kuzx4
∂S
∂x2

− x2
1

(
∂S
∂x2

)2
− x2

1

(
∂S
∂x4

)2
+ 2x1x2

∂S
∂x1

∂S
∂x2

− 2x1x2
∂S
∂x3

∂S
∂x4

+ 2x1x4
∂S
∂x1

∂S
∂x4

+ 2x1x4
∂S
∂x2

∂S
∂x3
− x2

2

(
∂S
∂x1

)2
− x2

2

(
∂S
∂x3

)2

+ 2x2x3
∂S
∂x1

∂S
∂x4

+ 2x2x3
∂S
∂x2

∂S
∂x3
− x2

3

(
∂S
∂x2

)2

− x2
3

(
∂S
∂x4

)2
− 2x3x4

∂S
∂x1

∂S
∂x2

+ 2x3x4
∂S
∂x3

∂S
∂x4

− x2
4

(
∂S
∂x1

)2
− x2

4

(
∂S
∂x3

)2
)

= −∂S
∂t

(209)

Because the Lagrangian multiplier is~λ = ∇S, then by Equation (190), one could try
to write

∇S = a~x + b~x⊥ (210)

or
∂S
∂x1

=ax1 + ba1(~x)

∂S
∂x2

=ax2 + ba2(~x)

∂S
∂x3

=ax3 + ba3(~x)

∂S
∂x4

=ax4 − b
(

x1a1(~x) + x2a2(~x) + x3a3(~x)
x4

)
(211)

for some functions a1, a2, a3. In order to integrate S, one can choose a1(~x) = a2(~x) =
a3(~x) = F(x4), so

∂S
∂x1

=ax1 + bF(x4)

∂S
∂x2

=ax2 + bF(x4)

∂S
∂x3

=ax3 + bF(x4)

∂S
∂x4

=ax4 − b
F(x4)

x4
(x1 + x2 + x3)

(212)

By integrating S from the three first equations, one obtains

S =
1
2

a(x2
1 + x2

2 + x2
3 + x2

4) + bF(x4)(x1 + x2 + x3).

By replacing S in the fourth equations, one has

ax4 + b
dF(x4)

dx4
(x1 + x2 + x3) = ax4 − b

F(x4)

x4
(x1 + x2 + x3) (213)

or
dF(x4)

dx4
= − F(x4)

x4
(214)
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so
F(x4) =

1
x4

(215)

Thus, the S function has the structure

S =
1
2

a(x2
1 + x2

2 + x2
3 + x2

4) + b
(x1 + x2 + x3)

x4
(216)

Now, one must verify that the S function above is the solution of the HJB equation. By
replacing (216) in (209), one obtains

b
16kx4

4

(
− bx4

1 − 2bx3
1x2 − 2bx3

1x3 − bx2
1x2

2 − 2bx2
1x2x3 + 2bx2

1x2x4 − 2bx2
1x2

3 − 3bx2
1x2

4+

2bx1x2
2x4 − 2bx1x2x2

3 − 2bx1x3
3 − 4bx1x3x2

4 + 2bx1x3
4 − bx2

2x2
3 − 2bx2

2x3x4

− 2bx2
2x2

4 − 2bx2x3
3 − 2bx2x2

3x4 − bx4
3 − 3bx2

3x2
4 − 2bx3x3

4 − 2bx4
4 + 4kuzx1x2x2

4

+ 4kuzx1x3
4 + 4kuzx2

2x2
4 + 4kuzx2x3x2

4 − 4kuzx3x3
4 + 4kuzx4

4

)
= 0

(217)

so the only possibility is b = 0, so there is no ~x⊥ component in the solution. Thus, finally,

S =
1
2

a(x2
1 + x2

2 + x2
3 + x2

4) (218)

and the controls (208) give ux = 0, uy = 0, from which the equations of motion for the ~x
vector is again given by the system (203). Thus, open- and closed-loop strategies give the
same answer for the dynamics, because this example belongs to the regular subclass [26] of
optimal control problems mentioned at the end of the Section 5.2.

6. Conclusions

In this article, we developed an optimal control perspective on the dynamical behaviour
of classical and quantum physical systems. The most crucial element of this view is the
presence of feedback characterized by open- or closed-loop strategies in the system.

Thus, in quantum theory, the closed-loop strategies appear naturally due to thinking
that Heisenberg’s commutation relations are a constraint in a non-commutative phase-
space. Hence, this implies a relation between any quantum state’s momentum and
particle position.

By taking the classical limit h̄→ 0 in the full quantum Hamilton–Jacobi Equation, one
arrives at the closed-loop dynamics associated with the classical Hamilton–Jacobi theory.
The non-commutative character of quantum theory (generated by quantum constraint) is
transferred to the classical theory through the closed-loop px = ∂S(x,t)

∂x strategy. Since S(x, t)
satisfies the classical Hamilton–Jacobi Equation, the dynamics generated by S(x, t) (under
the properties of canonical transformations, whose generator is just S(x, t)) are completely
equivalent to those open-loop dynamics dictated by the Hamiltonian equations of motion.

From a purely classical point of view, these closed-loop strategies can be explained
by the canonical transformation theory’s “two observers” character. If the solutions of the
equations of motion are constant for the second observer, then their solutions look like
constraints for the first one. That necessarily relates the momentum of the particle with its
position for the first observer, generating, in this way, the closed-loop px = ∂S(x,t)

∂x strategy.
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